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Abstract—What is the current state-of-the-art for image restoration and enhancement applied to degraded images acquired under less than

ideal circumstances?Can the application of such algorithms as a pre-processing step improve image interpretability formanual analysis or

automatic visual recognition to classify scene content?While there have been important advances in the area of computational photography to

restore or enhance the visual quality of an image, the capabilities of such techniques have not always translated in a useful way to visual

recognition tasks. Consequently, there is a pressing need for the development of algorithms that are designed for the joint problem of

improving visual appearance and recognition, whichwill be an enabling factor for the deployment of visual recognition tools inmany real-world

scenarios. To address this, we introduce theUG2 dataset as a large-scale benchmark composed of video imagery captured under challenging

conditions, and two enhancement tasks designed to test algorithmic impact on visual quality and automatic object recognition. Furthermore,

we propose a set ofmetrics to evaluate the joint improvement of such tasks aswell as individual algorithmic advances, including a novel

psychophysics-based evaluation regime for human assessment and a realistic set of quantitativemeasures for object recognition

performance.We introduce six new algorithms for image restoration or enhancement, whichwere created as part of the IARPA sponsored

UG2 Challengeworkshop held at CVPR2018. Under the proposed evaluation regime, we present an in-depth analysis of these algorithms

and a host of deep learning-based and classic baseline approaches. From the observed results, it is evident that we are in the early days of

building a bridge between computational photography and visual recognition, leavingmany opportunities for innovation in this area.

Index Terms—Computational photography, object recognition, deconvolution, super-resolution, deep learning, evaluation

Ç

1 INTRODUCTION

THE advantages of collecting imagery from autonomous
vehicle platforms such as small UAVs are clear. Man-por-

table systems can be launched from safe positions to penetrate

difficult or dangerous terrain, acquiring hours of video with-
out putting human lives at risk during search and rescue oper-
ations, disaster recovery, and other scenarios where some
measure of danger has traditionally been a stumbling block.
Similarly, cars equipped with vision systems promise to
improve road safety by more reliably reacting to hazards and
other road users compared to humans. However, what
remains unclear is how to automate the interpretation of what
are inherently degraded images collected in such applica-
tions—a necessary measure in the face of millions of frames
from individual flights or road trips. A human-in-the-loop
cannot manually sift through data of this scale for actionable
information in real-time. Ideally, a computer vision system
would be able to identify objects and events of interest or
importance, surfacing valuable data out of a massive pool of
largely uninteresting or irrelevant images, even when that
data has been collected under less than ideal circumstances.
To build such a system, one could turn to recent machine
learning breakthroughs in visual recognition, which have
been enabled by access tomillions of training images from the
Internet [1], [2]. However, such approaches cannot be used as
off-the-shelf components to assemble the system we desire,
because they do not take into account artifacts unique to the
operation of the sensor and optics configuration on an acquisi-
tion platform, nor are they strongly invariant to changes in
weather, season, and time of day.

Whereas deep learning-based recognition algorithms can
perform on par with humans on good quality images [3],
[4], their performance on distorted samples is degraded. It
has been observed that the presence of imaging artifacts can
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severely impact the recognition accuracy of state-of-the-art
approaches [5], [6], [7], [8], [9], [10], [11]. Having a real-
world application such as a search and rescue drone or
autonomous driving system fail in the presence of ambient
perturbations such as rain, haze or even motion induced
blur could have unfortunate aftereffects. Consequently,
developing and evaluating algorithms that can improve the
object classification of images captured under less than ideal
circumstances is fundamental for the implementation of
visual recognition models that need to be reliable. And
while one’s first inclination would be to turn to the area of
computational photography for algorithms that remove cor-
ruptions or gain resolution, one must ensure that they are
compatible with the recognition process itself, and do not
adversely affect the feature extraction or classification pro-
cesses (Fig. 1) before incorporating them into a processing
pipeline that corrects and subsequently classifies images.

The computer vision renaissance we are experiencing has
yielded effective algorithms that can improve the visual
appearance of an image [12], [13], [14], [15], [16], but many of
their enhancing capabilities do not translate well to recognition
tasks as the training regime is often isolated from the visual rec-
ognition aspect of the pipeline. In fact, recent works [5], [17],
[18], [19] have shown that approaches that obtain higher scores
on classic quality estimation metrics (namely Peak Signal to
Noise Ratio), and thus, would be expected to produce high-
quality images, do not necessarily perform well at improving
or even maintaining the original image classification perfor-
mance. Taking this into consideration, we propose to bridge
the gap between traditional image enhancement approaches
and visual recognition tasks as a way to jointly increase the
abilities of enhancement techniques for both scenarios.

In line with the above objective, in this work, we intro-
duce UG2: a large-scale video benchmark for assessing
image restoration and enhancement for visual recognition.
It consists of a publicly available dataset (https://goo.gl/
AjA6En) composed of videos captured from three difficult
real-world scenarios: uncontrolled videos taken by UAVs

and manned gliders, as well as controlled videos taken on
the ground. Over 200,000 annotated frames for hundreds of
ImageNet classes are available. From the base dataset, dif-
ferent enhancement tasks can be designed to evaluate
improvement in visual quality and automatic object recog-
nition, including supporting rules that can be followed to
execute such evaluations in a precise and reproducible man-
ner. This article describes the creation of the UG2 dataset as
well as the advances in visual enhancement and recognition
that have been possible as a result.

Specifically, we summarize the results of the IARPA
sponsored UG2 Challenge workshop held at CVPR 2018.
The challenge consisted of two specific tasks defined
around the UG2 dataset: (1) image restoration and enhance-
ment to improve image quality for manual inspection, and
(2) image restoration and enhancement to improve the auto-
matic classification of objects found within individual
images. The UG2 dataset contains manually annotated
video imagery (including object labels and bounding boxes)
with an ample variety of imaging artifacts and optical aber-
rations; thus it allows for the development and quantitative
evaluation of image enhancement algorithms. Participants
in the challenge were able to use the provided imagery and
as much out-of-dataset imagery as they liked for training
and validation purposes. Enhancement algorithms were
then submitted for evaluation and results were revealed at
the end of the competition period.

The competition resulted in six new algorithms, designed
by different teams, for image restoration and enhancement
in challenging image acquisition circumstances. These algo-
rithms included strategies to dynamically estimate corrup-
tion and choose the appropriate response, the simultaneous
targeting of multiple artifacts, the ability to leverage known
image priors that match a candidate probe image, super-res-
olution techniques adapted from the area of remote sensing,
and super-resolution via Generative Adversarial Networks.
This was the largest concerted effort to-date to develop new
approaches in computational photography supporting
human preference and automatic recognition. We look at all
of these algorithms in this article.

Having a good stable of existing and new restoration and
enhancement algorithms is a nice start, but are any of them
useful for the image analysis tasks at hand? Here we take a
deeper look at the problem of scoring such algorithms. Specif-
ically, the question of whether or not researchers have been
doing the right thing when it comes to automated evaluation
metrics for tasks like deconvolution, super-resolution and
other forms of image artifact removal is explored. We intro-
duce a visual psychophysics-inspired assessment regime,
where human perception is the reference point, as an alterna-
tive to other forms of automatic and manual assessment that
have been proposed in the literature. Using the methods and
procedures of psychophysics that have been developed for
the study of human vision in psychology, we can perform a
more principled assessment of image improvement than just
a simple A/B test, which is common in computer vision. We
compare this human experiment with the recently introduced
Learned Perceptual Image Patch Similarity (LPIPS) metric
proposed by Zhang et al. [21]. Further, when it comes to
assessing the impact of restoration and enhancement algo-
rithms on visual recognition, we suggest that the recognition

Fig. 1. (Top) In principle, enhancement techniques like theSuper-Resolution
Convolutional Neural Network (SRCNN) [20] should improve visual recogni-
tion performance by creating higher-quality inputs for recognition models.
(Bottom) In practice, this is not always the case, especially when new arti-
facts are unintentionally introduced, such as in this application of DeepVideo
Deblurring [16].
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performance numbers are the only metric that one should
consider. As we will see from the results, much more work is
needed before practical applications can be supported.

In summary, the contributions of this article are:

� A new video benchmark dataset representing both
ideal conditions and common aerial image artifacts,
which we make available to facilitate new research
and to simplify the reproducibility of experimentation.

� A set of protocols for the study of image enhancement
and restoration for image quality improvement, as
well as visual recognition. This includes a novel psy-
chophysics-based evaluation regime for human assess-
ment and a realistic set of quantitative measures for
object recognition performance.

� An evaluation of the influence of problematic condi-
tions on object recognition models including VGG16
and VGG19 [29], InceptionV3 [30], ResNet50 [31],
MobileNet [32], and NASNetMobile [33].

� The introduction of six new algorithms for image
enhancement or restoration, which were created as
part of the UG2 Challenge workshop held at CVPR
2018. These algorithms are pitted against eight differ-
ent classical and deep learning-based baseline algo-
rithms from the literature on the same benchmark data.

� A series of recommendations on specific aspects of the
problem that the field should focus its attention on so
that we have a better chance at enabling scene under-
standingwith less than ideal acquisition circumstances.

2 RELATED WORK

Datasets. The areas of image restoration and enhancement
have a long history in computational photography, with asso-
ciated benchmark datasets that are mainly used for the quali-
tative evaluation of image appearance. These include very
small test image sets such as Set5 [13] and Set14 [12], the set of
blurred images introduced by Levin et al. [34], and theDIVerse
2K resolution image dataset (DIV2K) [35] designed for super-
resolution benchmarking. Datasets containing more diverse
scene content have been proposed including Urban100 [15]
for enhancement comparisons and LIVE1 [36] for image qual-
ity assessment. While not originally designed for computa-
tional photography, the Berkeley Segmentation Dataset has
been used by itself [15] and in combination with LIVE1 [37]
for enhancement work. The popularity of deep learningmeth-
ods has increased demand for training and testing data, which
Su et al. provide as video content for deblurring work [16].

Importantly, none of these datasets were designed to combine
image restoration and enhancement with recognition for a
unified benchmark.

Most similar to the datasetwe employ in this paper are var-
ious large-scale video surveillance datasets, especially those
which provide a “fixed” overhead view of urban scenes [38],
[39], [40], [41]. However, these datasets are primarily meant
for other research areas (e.g., event/action understanding,
video summarization, face recognition) and are ill-suited for
object recognition tasks, even if they share some common
imaging artifacts that impair recognition.

With respect to data collected by aerial vehicles, the VIRAT
Video Dataset [42] contains “realistic, natural and challenging
(in terms of its resolution, background clutter, diversity
in scenes)” imagery for event recognition, while the Vis-
Drone2018 Dataset [26] is designed for object detection and
tracking. Other datasets including aerial imagery are the UCF
Aerial Action Data Set [43], UCF-ARG [44], UAV123 [25],
UAVDT [24], Campus [28], and the multi-purpose dataset
introduced by Yao et al. [45]. However, existing datasets in
this area contain a limitednumber of frames and object catego-
ries. Table 1 provides a comparison of our UG2 dataset to rele-
vant aerial datasets. As with the computational photography
datasets, none of these sets have protocols for image restora-
tion and enhancement coupledwith object recognition.

Visual Quality Enhancement. There is a wide variety of
enhancement methods dealing with different kinds of arti-
facts, such as deblurring (where the objective is to recover a
sharp version x0 of a blurry image ywithout knowledge of the
blur parameters) [34], [46], [47], [48], [49], [50], [51], [52],
denoising (where the goal is the restoration of an image x
from a corrupted observation y ¼ xþ n, where n is assumed
to be noise with variance s2) [48], [49], [53], [54], compression
artifact reduction (which focuses on removing blocking arti-
facts, ringing effects or other lossy compression-induced deg-
radation) [55], [56], [57], [58], reflection removal [59], [60], and
super-resolution (which attempts to estimate a high-resolu-
tion image from one ormore low-resolution images) [20], [61],
[62], [63], [64], [65], [66], [67], [68]. Other approaches designed
to deal with atmospheric perturbations include dehazing
(which attempts to recover the scene radiance J , the global
atmospheric light A and the medium transmission t from a
hazy image IðxÞ ¼ JðxÞtðxÞ þAð1� tðxÞÞ) [69], [70], [71],
[72], [73], and rain removal techniques [74], [75], [76], [77].

Most of these approaches are tailored to address a partic-
ular kind of visual aberration, and the presence of multiple
problematic conditions in a single image might lead to the

TABLE 1
Comparison of the UG2 Dataset to Related Aerial Datasets

Dataset Frames Videos Classes Capture conditions

Inria-AILD [22] 360 — 2 Ortho-rectified aerial imagery
iSAID [23] 2,806 — 15 Satellite images (Earth Vision)
UAVDT [24] 80,000 100 3 Mobile airborne videos (UAV)
UAV123 [25] 112,578 123 — Mobile airborne videos (UAV)
VisDrone [26] 179,264 263 10 Mobile airborne videos (UAV)
DOTA-v1.5 [27] 400,000 — 16 Satellite images (Earth Vision)
Campus [28] 929,499 — 6 Mobile airborne videos (UAV)
UG2 3,535,382 629 37 Mobile airborne videos (UAV, and Glider), ground-based videos

Datasets with a missing video count contain only still images. The UAV123 dataset is designed for tracking the trajectories of cars, and as such, does not contain
different object classes in its annotations.
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introduction of artifacts by the chosen enhancement tech-
nique. Recent work has explored the possibility of handling
multiple degradation types [78], [79], [80], [81].

Visual Enhancement for Recognition. Intuitively, if an image
has been corrupted, then employing restoration techniques
should improve the performance of recognizing objects in
the image. An early attempt at unifying a high-level task
like object recognition with a low-level task like deblurring
was performed by Zeiler et al. through deconvolutional net-
works [82], [83]. Similarly, Haris et al. [18] proposed an end-
to-end super-resolution training procedure that incorpo-
rated detection loss as a training objective, obtaining supe-
rior object detection results compared to traditional super-
resolution methods for a variety of conditions (including
additional perturbations on the low-resolution images such
as the addition of Gaussian noise).

Sajjadi et al. [19] argue that the use of traditional metrics
such as Peak Signal to Noise Ratio (PSNR), Structural Simi-
larity Index (SSIM), or the Information Fidelity Criterion
(IFC) might not reflect the performance of some models,
and propose the use of object recognition performance as an
evaluation metric. They observed that methods that pro-
duced images of higher perceptual quality obtained higher
classification performance despite obtaining low PSNR
scores. In agreement with this, Gondal et al. [84] observed
the correlation of the perceptual quality of an image with its
performance when processed by object recognition models.
Similarly, Tahboub et al. [85] evaluate the impact of degra-
dation caused by video compression on pedestrian detec-
tion. Other approaches have used visual recognition as a
way to evaluate the performance of visual enhancement
algorithms for tasks such as text deblurring [86], [87], image
colorization [88], and single image super-resolution [89].

Also similar to our work, Li et al. [90] perform an in-depth
analysis of diverse de-raining models where they compare
them using a wide variety of metrics, including their impact
on object detection. It is important to note that while similar in
spirit to our work, the main purpose of their task-driven eval-
uation is to provide a complementary perspective on the per-
formance of their visual enhancement method, rather than to
improvemachine learning-based object recognition.

While the above approaches employ object recognition in
addition to visual enhancement, there are approaches
designed to overlook the visual appearance of the image and
instead make use of enhancement techniques to exclusively
improve the object recognition performance. Sharma et al. [91]
make use of dynamic enhancement filters in an end-to-end
processing and classification pipeline that incorporates two
loss functions (enhancement and classification). The approach
focuses on improving the performance of challenging high-
quality images. In contrast to this, Yim et al. [10] propose a
classification architecture (comprised of a pre-processing
module and a neural network model) to handle images
degraded by noise. Li et al. [92] introduced a dehazingmethod
that is concatenatedwith Faster R-CNN and jointly optimized
as a unified pipeline. It outperforms traditional Faster R-CNN
and other non-joint approaches. Singh et al. [93] propose the
use of a dual directed capsule network with a dual high-reso-
lution and targeted reconstruction loss to reconstruct very
low-resolution images (16 x 16 pixels) in order to improve
digit and face recognition.

Additional work has been undertaken in using visual
enhancement techniques to improve high-level tasks such
as face recognition [94], [95], [96], [97], [98], [99], [100], [101],
[102], [103], [104], [105], [106] (through the incorporation of
deblurring, super-resolution, and hallucination techniques)
and person re-identification [107] algorithms for video sur-
veillance data.

3 A FRAMEWORK FOR IMPROVING OBJECT

RECOGNITION IN DEGRADED IMAGERY

All images acquired in real environments are degraded in
someway (Fig. 2a). A detailed discussion of how this happens
can be found in Supp. Section 1, available online. The first step
towards solving the problem at hand is to define a specific
framework that algorithms will operate in. Ideally, the frame-
work should be able to jointly optimize the dual tasks of image
restoration and enhancement, and object recognition. The
input to the system is a naturally corrupted image and the
output is the corresponding improved image, optimized for
classification performance. During training, a learning objec-
tive ’ can be defined that compares the reconstructed output
from the system to that derived from baseline input. The
result is then used to make further adjustments to the model,
if needed, in order to improve performance over the baseline.
This process is shown in Fig. 2b.

For example, if me represents the evaluation metric for
the enhanced image, and mb represents the baseline metric
for the corresponding unaltered image, then a possible
learning objective for this setup can be defined as

’ ¼ me �mb � "; " 2 ½�1; 1�; (1)

where " is a threshold applied over the difference between
scores obtained for the enhanced and unaltered noisy images.
The metricm in Eq. (1) can be the class probabilities obtained
from the recognition model for the enhanced image and its
corresponding unaltered image. Even when operating with
probability scores, " lies between ½�1; 1� to account for situa-
tions when the enhanced image is worse than the unaltered
image, leading to worse object recognition performance (e.g.,
accuracy is 0 for the enhanced image and 1 for the baseline).

The learning objective can be used alone or in conjunc-
tion with other loss functions (e.g., reconstruction loss for
restoration). It can be optimized using gradient descent. If
ground-truth is available for both image artifacts and
objects present in images, then the learning setting is fully
supervised. If only ground-truth object annotations are
available, then the setting is semi-supervised (this is what is
considered for the UG2 dataset). All of the novel algorithms
we discuss in this paper operate within this framework.

4 A NEW EVALUATION REGIME FOR IMAGE

RESTORATION AND ENHANCEMENT

To assess the interplay between restoration and enhance-
ment and visual recognition, we designed two evaluation
tasks: (1) enhancement to facilitate manual inspection, where
algorithms produce enhanced images to facilitate human
assessment, and (2) enhancement to improve object recognition,
where algorithms produce enhanced images to improve
object classification by state-of-the-art neural networks.
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4.1 Enhancement to Facilitate Manual Inspection

The first task is an evaluation of the qualitative enhance-
ment of images. Through this task, we wish to answer two
questions: Did the algorithm produce an enhancement that
agrees with human perceptual judgment? And to what
extent was the enhancement an improvement or deteriora-
tion? Widely used metrics such as SSIM have attempted to
answer these questions by estimating human perception
but have often failed to accurately imitate the nuances of
human visual perception, and at times have caused algo-
rithms to deteriorate perceptual quality [21].

While prior work has successfully adapted psychophysi-
cal methods from psychology as a means to directly study
perceptual quality, these methods have been primarily
posed as real-vs-fake tests [108]. With respect to qualitative
enhancement, these real-vs-fake methods can only indicate
if an enhancement has caused enough alteration to cause
humans to cross the threshold of perception, and provides
little help in answering the two questions we are interested
in for this task. Zhang et al. [21] came close to answering
these questions when they proposed LPIPS for evaluating

perceptual similarity. However, this metric lacks the ability
to measure whether the enhancement was an improvement
or a deterioration (see the analysis in Section 7).

In light of this, for our task we propose a new procedure,
grounded in psychophysics, to evaluate the visual enhance-
ment of images by answering both of our posed questions.
The procedure for assessing image quality enhancement is a
non-forced-choice procedure that allows us to take measure-
ments of both the threshold of perceived change and the
suprathresholds, which represent the degree of perceived
change [109]. Specifically, we employ a bipolar labeled Lik-
ert Scale to estimate the amount of improvement or deterio-
ration the observer perceives, once the threshold has been
crossed. The complete procedure is as follows.

An observer is presented with an image x positioned on
the left-hand side of a screen and the output of the enhance-
ment algorithm y on the right. The observer is informed that
x is the original image and y is the enhanced image. Below
the image pair, five labels are provided and the observer is
asked to select the label that most applies (see Fig. 3 for
labels and layout). To capture as much of the underlying

Fig. 2. a) Sources of image degradation during acquisition. For a detailed discussion of how these artifacts occur, see Supp. Section 1, which can be
found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2996538. b) and c) The proposed frame-
work for unifying image restoration and enhancement and object recognition, supporting machine learning training and testing.

4276 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 12, DECEMBER 2021

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2996538


complexities in human judgment as possible, no criteria is
provided for making a selection. To reduce any dependence
on the subsystems in the visual cortex that specialize in
memory, the pair of images is displayed until the observer
selects their perceived label. An observer is given unlimited
time and is informed that providing accurate labels is most
important. For images larger than 480� 480 pixels, the
observer has the option to enlarge the images and examine
them in finer detail.

The label that is selected by the observer is then converted
to an assigned ordinal value 1� 5 where [1, 3) and (3, 5] are
the suprathreshold measurements of improvement and dete-
rioration, respectively. A rating of 3 is the superficial thresh-
old imposed on the observer, which indicates that the
enhancement was imperceptible. In our proposed procedure,
there is no notion of accuracy in the measurement of qualita-
tive enhancement, as it is left entirely up to the observer’s sub-
jective discretion. However, when there are � 2 sampled
observers, the perception of quality to the average observer
can be estimated to provide a reliablemetric for the evaluation
of qualitative enhancement. We verified this holds true even
when x and y are swapped (i.e., responses are symmetric).

To perform a large scale evaluation, we used Amazon’s
Mechanical Turk (AMT) service, which is widely deployed for
many related tasks in computer vision [1], [21], [110]. AMT
allows a Requester (i.e., researcher) to hireWorkers to perform
a task for payment. Our taskwas for aWorker to participate in
the rating procedure for 100 image pairs. An additional three
sentinel images pairs were given to ensure that the Worker
was actively participating in the rating procedure. The ratings
of Workers who failed to correctly respond to at least two of
the three sentinel image pairs were discarded. In total, we had
over 600 Workers rating each image enhancement approxi-
mately 20 times. Out of that pool, � 85:4% successfully classi-
fied a majority of the sentinel image pairs (the ratings
provided by the remaining Workers were discarded). See
Section 7 for results and analysis.

4.2 Enhancement to Improve Object Recognition

The second task is an evaluation of the performance improve-
ment given by enhanced images when used as input to state-
of-the-art image classification networks. When considering a
fixed dataset for training (as in Fig. 2b), the evaluation

protocol allows for the use of some within dataset training
data (the training data providedby theUG2 dataset, described
below, contains frame-level annotations of the object classes of
interest), and as much out of dataset data as needed for train-
ing and validation purposes. In order to establish good
baselines for classification performance before and after the
application of image enhancement and restoration algo-
rithms, this task makes use of a selection of deep learning
approaches to recognize annotated objects and then scores
results based on the classification accuracy. The Keras [111]
versions of the pre-trained networks VGG16 and VGG19 [29],
InceptionV3 [30], and ResNet50 [31] are used for this purpose.
We also look at two lightweight mobile networks: Mobile-
Net [32] andNASNetMobile [33].

Each candidate algorithm is treated as an image pre-proc-
essing step to prepare sequestered test images to be submit-
ted to all six networks. After pre-processing, the objects of
interest are cropped out of the images based on verified
ground-truth coordinates. The cropped images are then
used as input to the networks. Algorithms are evaluated
based on any improvement observed over the baseline classi-
fication result (i.e., the classification scores of the un-altered
test images). The work flow of this evaluation pipeline is
shown in Fig. 2c. To avoid introducing further artifacts due
to down-sampling, algorithms are required to have consis-
tent input and output frame sizes.

4.2.1 Classification Metrics

The networks used for the classification task return a list of the
ImageNet synsets (ImageNet provides images for “synsets”
or “synonym sets” of words or phrases that describe a concept
in WordNet [112]) and the probability of the object belonging
to each of the synset classes. However, (as will be discussed in
Section 5), in many cases it is impossible to provide fine-
grained labeling for the annotated objects. Consequently,
most of the super-classes in our dataset are composed ofmore
than one ImageNet synset. That is, each annotated image i has
a single super-class labelLi which is defined by a set of Image-
Net synsetsLi ¼ fs1; . . . ; sng.

To measure accuracy, we observe the number of correctly
identified synsets in the top-five predictions made by each
pre-trained network. A prediction is considered to be cor-
rect if its synset belongs to the set of synsets in the ground-
truth super-class label. We use two metrics for this. The first
measures the rate of achieving at least one correctly classi-
fied synset class (M1). In other words, for a super-class label
Li ¼ fs1; . . . ; sng, a network is able to place at least one cor-
rectly classified synset in the top-five predictions. The sec-
ond measures the rate of placing all the correct synset
classes in the super-class label synset set (M2). For example,
for a super-class label Li ¼ fs1; s2; s3g, a network is able to
place three correct synsets in the top-five predictions.

4.2.2 Scoring

Each image enhancement or restoration algorithm’s perfor-
mance on the classification task is then calculated by apply-
ing one of the two metrics defined above for each of the
four networks and each collection within the UG2 dataset.
This results in up to 18 scores for each metric (i.e., M1 or M2
scores from VGG16, VGG19, Inception, ResNet, MobileNet,

Fig. 3. The visual enhancement task deployed on Amazon Mechanical
Turk. An observer is presented with the original image x and the enhanced
image y. The observer is then asked to select which label they perceive is
most applicable. The selected label is converted to an integer value [1,5].
The final rating for the enhanced image is the mean score from approxi-
mately 20 observers. SeeSection 4.1 for further details.
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and NASNetMobile for the UAV, Glider, and Ground collec-
tions). For the image enhancement and restoration algorithms
we consider in this article, each is ranked against all other
algorithms based on these scores. A score for an enhancement
algorithm is considered “valid” if it was higher than that of
the scores obtained by evaluating the classification perfor-
mance of the un-altered images. In other words, we only
consider a score valid if it improves upon the baseline classifi-
cation task of classifying the original images. The number of
valid scores in which an algorithm excels over the others
being evaluated is then counted as its score in points for the
task (for a maximum of 36 points, achievable if an algorithm
obtained the highest improvement—compared to all other
competitors—in all possible configurations).

5 THE UG2 DATASET

As a basis for the evaluation regime described above in
Section 4, we collected a new dataset called UG2 (UAV,
Glider, and Ground). The UG2 dataset contains videos from
challenging imaging scenarios containing mobile airborne
cameras and ground-based captures. While we provide
frame-level annotations for the purpose of object classifica-
tion, the annotations can be re-purposed for other high-level
tasks such as object detection and tracking [113]. The video
files are provided to encourage further annotation for other
vision tasks. The training and test datasets employed in the
evaluation are composed of annotated frames from three
different video collections. The annotations provide bound-
ing boxes establishing object regions and classes, which
were manually annotated using the VATIC tool for video
annotation [114]. For running classification experiments the
objects were cropped from the frames in a square region of
at least 224� 224 pixels (a common input size for many
deep learning-based recognition models), using the annota-
tions as a guide. For details on annotation, see Supp. Sec-
tion 2, available online.

Each annotation in the dataset indicates the position,
scale, visibility, and super-class of an object in a video. The
need for high-level classes (super-classes) arises from the
challenge of performing fine-grained object recognition
using aerial collections, which have high variability in both
object scale and rotation. These two factors make it difficult
to differentiate some of the more fine-grained ImageNet cat-
egories. For example, while it may be easy to recognize a
car from an aerial picture taken from hundreds (if not thou-
sands) of feet above the ground, it might be impossible to
determine whether that car is a taxi, a jeep or a sports car.
Thus we defined super-classes that encompass multiple
visually similar ImageNet synsets, as well as evaluation
metrics that allow for a coarse-grained classification evalua-
tion of such cases (see Section 4.2.1). The three different
video collections consist of:

1) UAV Video Collection: Composed of clips recorded
from small UAVs in both rural and urban areas, the
videos in this collection are open-source content
tagged with a Creative Commons license, obtained
from YouTube (Supp. Fig. 3a), available online.
Because of the source, they have different video resolu-
tions (from 600� 400 to 3840� 2026), objects of inter-
est sizes (cropped objects with sizes ranging from

224� 224 to 800� 800), and frame rates (from 12 to 59
FPS). This collection has distortions such as glare/lens
flare, compression artifacts, occlusion, over/under
exposure, camera shaking, sensor noise, motion blur,
and fish-eye lens distortion. Videos with problematic
scene/weather conditions such as night/low light
video, fog, cloudy conditions and occlusion due to
snowfall are also included.

2) Glider Video Collection: Consists of videos recorded by
licensed pilots of fixed-wing gliders in both rural
and urban areas (Supp. Fig. 3b), available online.
The videos have frame rates ranging from 25 to 50
FPS, objects of interest sizes ranging from 224� 224
to 900� 900, and different types of compression
such as MTS, MP4, and MOV. The videos mostly
present imagery taken from thousands of feet above
the ground, further increasing the difficulty of object
recognition. Additionally, the scenes contain artifacts
such as motion blur, camera shaking, noise, occlu-
sion (which in some cases is pervasive throughout
the videos, showcasing parts of the glider that par-
tially occlude the objects of interest), glare/lens flare,
over/under exposure, interlacing, and fish-eye lens
distortion. Videos with problematic weather condi-
tions such as fog, clouds, and rain are also present.

3) Ground Video Collection: In order to provide some
ground-truth with respect to problematic image con-
ditions, this collection contains videos captured at
ground level with intentionally induced artifacts
(Supp. Fig. 3c), available online. These videos cap-
ture static objects (e.g., flower pots, buildings) at a
wide range of distances (30, 40, 50, 60, 70, 100, 150,
and 200ft), and motion blur induced by an orbital
shaker to generate horizontal movement at different
rotations per minute (120rpm, 140rpm, 160rpm, and
180rpm). Additionally, this collection includes vid-
eos under different weather conditions (sun, clouds,
rain, snow) that can affect object recognition. We
used a Sony Bloggie hand-held camera (with
1280� 720 resolution and a frame rate of 60 FPS)
and a GoPro Hero 4 (with 1920� 1080 resolution
and a frame rate of 30 FPS), whose fish-eye lens
introduced further distortion. Furthermore, we pro-
vide an additional class of videos (resolution-chart)
showcasing a 9� 11 inch 9� 9 checkerboard grid
exhibiting all the aforementioned distances at all
intervals of rotation. The motivation for including
this additional class is to provide a reference for cam-
era calibration and to aid participants in finding the
distortion measures of the cameras used.

Training Dataset. The training dataset is composed of 629
videos with 3,535,382 frames, representing 228 ImageNet [1]
classes extracted from annotated frames from the three dif-
ferent video collections. These classes are further catego-
rized into 37 super-classes encompassing visually similar
ImageNet categories and two additional classes for pedes-
trian and resolution chart images. The dataset contains a
subset of 152,083 object-level annotated frames where
160,160 objects are fully visible (out of 200,694 total anno-
tated frames) and the videos are tagged to indicate problem-
atic conditions. Table 2 summarizes this dataset.
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Testing Dataset. The testing dataset is composed of 55 vid-
eos with frame-level annotations. Out of the annotated
frames, 8,910 disjoint frames were selected among the three
different video collections, from which we extracted 9,187
objects. These objects are further categorized into 42 super-
classes encompassing visually similar ImageNet categories.
While most of the super-classes in the testing dataset over-
lap with those in the training dataset, there are some classes
unique to each. Table 3 summarizes this dataset.

6 NOVEL AND BASELINE ALGORITHMS

Six competitive teams participated in the 2018 UG2 Work-
shop held at CVPR, each submitting a novel approach for
image restoration and enhancement meant to address the
evaluation tasks we described in Section 4. In addition, we
assessed eight different classical and deep learning-based
baseline algorithms from the literature.

6.1 Challenge Workshop Entries

The six participating teams were Honeywell ACST, North-
western University, Texas A&M and Peking University,
National Tsing Hua University, Johns Hopkins University,
and Noblis. Each team had a unique take on the problem,
with an approach designed for one or both of the tasks.

6.1.1 Camera and Conditions-Relevant Enhancements

(CCRE)

Honeywell ACST’s algorithmic pipeline was motivated by a
desire to closely target image enhancements based on image
quality assessment. Of the wide range of image enhancement
techniques, there is a smaller subset of enhancements which
may be useful for a particular image. To find this subset, the
CCRE pipeline considers the intersection of camera-relevant
enhancements with conditions-relevant enhancements. Exam-
ples of camera-relevant enhancements include de-interlacing,
rolling shutter removal (both depending on the sensor
hardware), and de-vignetting (for fisheye lenses). Example
conditions-relevant enhancements include de-hazing (when
imaging distant objects outdoors) and raindrop removal. To
choose among the enhancements relevant to various environ-
mental conditions and the camera hardware, CCREmakes use
of defect-specific detectors (Supp. Fig. 4), available online, and
takes� 12 seconds to process each image.

This approach, however, requires a measure of manual
tuning. For the evaluation task targeting human vision-based
image quality assessment, manual inspection revealed severe
interlacing in the glider set. Thus a simple interlacing detector
was designed to separate each frame into two fields (com-
prised of the even and odd image rows, respectively) and
compute the horizontal shift needed to register the two. If that
horizontal shift was greater than 0.16 pixels, then the image
was deemed interlaced, and de-interlacing was performed by
linearly interpolating the rows to restore the full resolution of
one of the fields.

For the evaluation task targeting automated object classifi-
cation, de-interlacing is also performed with the expectation
that the edge-type features learned by the VGG network will
be impacted by jagged edges from interlacing artifacts.
Beyond this, a camera and conditions assessment is partially
automated using a file analysis heuristic to determine which
of the collections a given video frame came from. While inter-
lacing was the largest problem with the glider images, the
ground and UAV collections were degraded by compression
artifacts. Video frames from those collections were processed
with the Fast Artifact Reduction CNN [58].

6.1.2 Multiple Artifact Removal CNN (MA-CNN)

TheNorthwestern team focused their attention on threemajor
causes of artifacts in an image: (1) motion blur, (2) de-focus

TABLE 2
Summary of the UG2 Training Dataset

Collection UAV Glider Ground Total

Total Videos 231 120 278 629
Total Frames 1,501,675 1,840,160 193,547 3,535,382
Annotated Videos 30 30 136 196
Annotated Frames 28,263 25,246 98,574 152,083
Extracted Objects 29,826 31,760 98,574 160,160
Super-Classes [1] 31 20 20 37

TABLE 3
Summary of the UG2 Testing Dataset

Collection UAV Glider Ground Total

Total Videos 19 15 21 55
Annotated Frames 2,814 2,909 3,187 8,910
Extracted Objects 3,000 3,000 3,187 9,187
Super-Classes [1] 28 17 20 42

Fig. 4. Distribution of LPIPS similarity between original and enhanced image pairs from four different approaches, and the human perceived improve-
ment/deterioration for each of the collections within the UG2 dataset. Images human raters considered as having a high-level of improvement tended
to also have low LPIPS scores, while images with higher LPIPS scores tended to be rated poorly by human observers.
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blur and (3) compression algorithms. They observed that in
general, traditional algorithms address inverse problems in
imaging via a two-step procedure: first by applying proximal
algorithms to enforce measurement constraints and then by
applying natural image priors (sometimes denoisers) on the
resulting output [115], [116]. This process takes about 1 second
per image. Recent trends in inverse imaging algorithms have
focused on developing a single algorithm or network to
address multiple imaging artifacts [117]. These networks are
alternately applied to denoise and deblur the image. Building

on the principle of using image quality as prior knowledge,
the MA-CNN learning-based approach was developed to
remove multiple artifacts in an image. A training dataset was
created by introducing motion, de-focus and compression
artifacts into 126,000 images from ImageNet. The motion-blur
was introduced by using a kernel with a fixed length l and
random direction u for each of the images in the training data-
set. The defocus blurwas introduced by using a Gaussian ker-
nel with a fixed standard variance s. The parameters {l;s}
were tuned to create a perceptually improved result.

MA-CNN is a fully convolutional network architecture
with residual skip connections to generate the enhanced
image (Supp. Fig. 5), available online. To achieve better
visual quality, a perceptual loss function that uses the first
four convolutional layers of a pre-trained VGG-16 network
is incorporated.

By default, the output of the MA-CNN contains checker-
board artifacts. Since these checkerboard artifacts are periodic,
they can be removed by suppressing the corresponding fre-
quencies in the Fourier-domain. Moreover, all images (of the
same size) generatedwith the network have artifacts in a simi-
lar region in the Fourier domain. For images of differing sizes,
the distance of the center of the artifact from the origin is pro-
portional to its size.

6.1.3 Cascaded Degradation Removal Modules (CDRM)

The Texas A&M team observed that independently removing
any single type of degradation could, in fact, undermine per-
formance in the object recognition evaluation task since other
degradations were not simultaneously considered and those
artifacts might be amplified during this process. Conse-
quently, they proposed a pipeline that consists of sequentially
cascaded degradation removal modules to improve recogni-
tion. Further, they observed that different collections within
the UG2 dataset had different degradation characteristics. As
such, they proposed to first identify the incoming images as
belonging to one of the three collections as a form of quality
estimation, and then deploy a specific processing model for
each collection. The entire pipeline process an image in � 14
seconds. In their model, they adopted six different enhance-
mentmodules (Supp. Fig. 6), available online.

(1) Histogram Equalization balances the distribution of pixel
intensities and increases the global contrast of images. To do
this, Contrast Limited Adaptive Histogram Equalization
(CLAHE) is adopted [118]. The image is partitioned into
regions and the histogram of the intensities in each ismapped

Fig. 5. LPIPS similarity versus human ratings for the baseline algorithms,
over all of the collections within the UG2 dataset.

Fig. 6. Comparison of perceived visual improvement for all collections after applying restoration and enhancement algorithms.
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to a more balanced distribution. As the method is applied at
the region level, it is more robust to locally strong over-/
under-exposures and can preserve edges better. (2)Given that
removing blur effects is widely found to be helpful in fast-
moving aerial cameras, and/or in low light filming condi-
tions,Deblur GAN [119] is employed as an enhancementmod-
ule in which, with adversarial training, the generator in the
network is able to transform a blurred image to a visually
sharper one. (3) Recurrent Residual Net for Super-Resolutionwas
previously proposed in [120]. Due to the large distance
between objects and aerial cameras, low-resolution is a bottle-
neck for recognizing most objects from UAV photos. This
model is a recurrent residual convolutional neural network
consisting of six layers and skip-connections. (4) Deblocking
Net [121] is an auto-encoder-based neural network with dila-
tion convolutions to remove blocking effects in videos, which
was fine-tuned using the VGG-19 perceptual loss function,
after training using JPEG-compressed images. Since lossy
video coding for on-board sensors introduced blocking effects
inmany frames, the adoption of the deblocking net was found
to suppress visual artifacts. (5) RED-Net [122] is trained to
restore multiple mixed degradations, including noise and
low-resolution together. Images with various noise levels and
scale levels are used for training. The network can improve
the overall quality of images. (6) HDR-Net [123] can further
enhance the contrast of images to improve the quality for
machine and human analysis. This network learns to produce
a set of affine transformations in bilateral space to enhance the
imagewhile preserving sharp edges.

6.1.4 Tone Mapping Deep Image Prior (TM-DIP)

The main idea of the National Tsing Hua University team’s
approach was to derive deep image priors for enhancing
images that are captured from a specific scene with certain
poor imaging conditions, such as the UG2 collections. They
consider the setting that the high-quality counterparts of the
poor-quality input images are unavailable, and hence it is
not possible to collect pairwise input/output data for end-
to-end supervised training to learn how to recover the sharp
images from blurry ones. The method of Deep Image Prior
presented by Ulyanov et al. [124] can reconstruct images
without using information from ground-truth sharp images.
However, it usually takes several minutes to produce a
prior image by training an individual network for each
image. Thus a new method was designed to replace the per-
image prior model of [124] by a generic prior network. This
idea is feasible since images taken in the same setting, e.g.,
the UG2 videos, often share similar features. It is not neces-
sary to have a distinct prior model for each image. One can
learn a generic prior network that takes every image as
input and generates its corresponding prior as output.

At training time, the method from [124] is used to gener-
ate image pairs fðI; V Þg for training a generic prior network,
where I is an original input image and V is its correspond-
ing prior image. The generic prior network adopts an
encoder-decoder architecture with skip connections as in
[125]. At inference time, given a new image, its correspond-
ing prior image is efficiently obtained from the learned
generic prior network, with tone mapping then applied to
enhance the details.

It was observed that the prior images obtained by the
learned generic prior network usually preserve the signifi-
cant structure of the input images but exhibit fewer details.
This observation, therefore, led to a different line of thought
on the image enhancement problem. By comparing the prior
image with the original input image, details for enhance-
ment may be extracted. Thus, the tone mapping technique
presented in [126] was used to enhance the details

eI ¼ I

V

� �g

ðV Þ ; (2)

where the ratio I=V can be considered the details, and g is a
factor for adjusting the degree of detail-enhancement. With
the tone-mapping function in Eq. (2), the local details are
detached from the input image, and the factor g is subse-
quently adjusted to obtain an enhanced image eI.
6.1.5 Satellite Images Super-Resolution (SSR)

The team from Johns Hopkins University proposed a neural
network-based approach to apply super-resolution on images.
They trained their model on satellite imagery, which has an
abundance of detailed features. Their network is fully convo-
lutional, and takes as input an image of any resolution and out-
puts an image that is exactly double the original input inwidth
and height in� 3 seconds.

The network is constrained to 32� 32 pixel patches of the
image with an “apron” of 2 pixels for an overlap. This results
in a 64� 64 output where the outer 4 pixels are ignored, as
they are the apron—they mirror the edge to “pad” the image.
These segments are then stitched together to form the final
image. The network consists of five convolutional layers
(Supp. Table 1), available online. Most of the network’s layers
contain 1� 1 kernels, and hence are just convolutionalized
fully connected layers. This network structure is appropriate
for a super-resolution task because it can be equated to a
regression problem where the input is a 25 dimension (5� 5)
vector leading to a 4 dimensional (2� 2) vector. The first con-
volutional layer is necessary to maintain the spatial relation-
ships of the visual features through the 5� 5 kernel.

The SpaceNet dataset [127] is used to train this network
and is derived from satellite-based images. Images were
downsampled and paired with the originals. Training took
place for 20 epochs using an L2 + L1 combined loss and the
Adam optimizer in Keras/Tensorflow [111].

6.1.6 Style-Transfer Enhancement Using

GANs (ST-GAN)

Noblis attempted a style-transfer approach for improving
the quality of the UG2 imagery. Since the classification net-
works used in the UG2 evaluation protocol were all trained
on ImageNet, a CycleGAN [128] variant was trained to
translate between the UAV and drone collections and
ImageNet, using LSGAN [129] losses. The architecture was
based on the original CycleGAN paper, with modified gen-
erators adding skip connections between same spatial reso-
lution convolutional layers on both sides of the residual
blocks (in essence a U-Net [125] style network), which
appeared to improve retention of details in the output
images. This algorithm was able to process each image in
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less than 4 seconds. The UG2 to ImageNet generator was
also made to perform 4� upscaling (by adding two 0.5
strided convolutional layers after the first convolutional
layer), and it was also made to perform 4� downscaling (by
adding two stride 2 convolutional layers after the first con-
volutional layer). The discriminators were left unmodified.
The networks were trained using 128� 128 patches selected
from the UG2 images, and ImageNet images cropped and
resized to 512� 512. UG2 patches were selected by ran-
domly sampling regions around the ground-truth annota-
tion bounding boxes to avoid accidentally sampling flat-
colored patches.

However, several problems were initially encountered
when optimizing the network. Optimization would fail out-
right, unless it employed some formof normalization. Adding
the identitymapping losses (i.e., loss terms forGðXÞ �X, and
F ðY Þ � Y ) discussed in the original CycleGAN paper proved
effective in avoiding these kinds of failures. Since the UG2

evaluation protocol specifies the enhancement of full video
frames, either a larger input to the generator must be used
(which seemed feasible considering a fully-convolutional
architecture), or the input imagemust be divided into tiles. To
address this, an operation that performed normalization inde-
pendently down the channels of each pixel was used. This sta-
bilized convergence and did not cause problems when tiling
out very large images.

6.2 Baseline Algorithms

The following algorithms serve as canonical references or
baselines against which the algorithms in Section 6.1 were
tested. We used both classical methods and state-of-the-art
deep learning-based methods for image interpolation [130],
super-resolution [20], [67], and deblurring [131], [132]

Classical Methods. For image enhancement, we used three
different interpolation methods (bilinear, bicubic and nearest
neighbor) [130] and a single restoration algorithm (blind
deconvolution [131]). The interpolation algorithms attempt to
obtain a high-resolution image by up-sampling the source
low-resolution image and by providing the best approxima-
tion of a pixel’s color and intensity values depending on the
nearby pixels. Since they do not need any prior training, they
can be directly applied to any image. Nearest neighbor inter-
polation uses a weighted average of the nearby translated
pixel values in order to calculate the output pixel value. Bilin-
ear interpolation increases the number of translated pixel val-
ues to two and bicubic interpolation increases it to four.
Different from image enhancement, in image restoration, the
degradation, which is the product of motion or depth varia-
tion from the object or the camera, is modeled. The blind
deconvolution algorithm can be used effectively when no
information about the degradation (blur and noise) is
known [133]. The algorithm restores the image and the point-
spread function (PSF) simultaneously. We used Matlab’s
blind deconvolution algorithm, which deconvolves the image
using the maximum likelihood algorithm, with a 3� 3 array
of 1s as the initial PSF.

Deep Learning-Based Methods. With respect to state-of-the-
art deep learning-based super-resolution algorithms, we
tested the Super-Resolution Convolutional Neural Network
(SRCNN) [20] and Very Deep Super Resolution (VDSR) [67].

The SRCNN method employs a feed-forward deep CNN to
learn an end-to-end mapping between low-resolution and
high-resolution images. The network was trained on 5million
“sub-images” generated from 395,909 images of the ILSVRC
2013 ImageNet detection training partition [1]. The VDSR
algorithm [67] outperforms SRCNN by employing a deeper
CNN inspired by the VGG architecture [29] and decreases
training iterations and time by employing residual learning
with a very high learning rate for faster convergence. Unlike
SRCNN, the network is capable of handling different scale
factors.

With respect to deep learning-based image restoration
algorithms, we tested Deep Dynamic Scene Deblurring [132],
which was designed to address camera shake blur. However,
the results presented in [132] indicated that this method can
obtain good results for other types of blur. The algorithm
employs a CNN that was trained with video frames contain-
ing synthesized motion blur such that it receives a stack of
neighboring frames and returns a deblurred frame. The algo-
rithm allows for three types of frame-to-frame alignment: no
alignment, optical flow alignment, and homography align-
ment. For our experiments, we used optical flow alignment,
which was reported to have the best performance with this
algorithm. We had originally evaluated an additional video
deblurring algorithm proposed by Su et al. [16]. However, this
algorithm employs information across multiple consecutive
frames to perform its deblurring operation. Given that the
training and testing partitions of the UG2 dataset consist of
disjoint video frames, we omitted this method to provide a
fair comparison.

With respect to image enhancement specifically to improve
classification, we tested the recently released algorithm by
Sharma et al. [91]. This approach learns a dynamic image
enhancement network with the overall goal to improve classi-
fication, but not necessarily the human perception of the
image. The proposed architecture enhances image features
selectively, in such a way that the enhanced features provide
a valuable improvement for a classification task. High quality
(i.e., free of visual artifacts) images are used to train a CNN to
learn a configuration of enhancement filters that can be
applied to an input image to yield an enhanced version that
provides better classification performance.

7 RESULTS & ANALYSIS

In the following analysis, we review the results that came
out of the UG2 Workshop held at CVPR 2018, and discuss
additional results from the slate of baseline algorithms.

7.1 Enhancement to Facilitate Manual Inspection
(UG2 Evaluation Task 1)

There is a recent trend to use deep features, as measured by
the difference in activations from the higher convolutional
layers of a pre-trained network for the original and recon-
structed images, as a perceptual metric—the motivation
being deep features somewhat mimic human perception.
Zhang et al. [21] evaluate the usability of these deep features
as a measure of human perception. Their goal is to find a
perceptual distance metric that resembles human judgment.
The outcome of their work is the LPIPS metric, which meas-
ures the perceptual similarity between two images ranging
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from 0, meaning exactly similar, to 1, which is equivalent to
two completely dissimilar images. Here we compare this
metric (i.e., similarity between the original image and the
output of the evaluated enhancement algorithms) directly
to human perception, which we argue is the better reference
point for such assessments.

We used the most current version (v.0.1) of the LPIPS
metric with a pre-trained, linearly calibrated AlexNet
model. As can be observed in Fig. 4, the four novel algo-
rithms that were submitted by participants for the first UG2

evaluation task have very heterogeneous effects on different
images of the dataset, with LPIPS scores ranging all the way
from 0 (no perceptual dissimilarity) to 0.4 (moderate dissim-
ilarity). This effect is accentuated for the images in the UAV
Collection (Fig. 4a), which yields more variance in LPIPS
scores, whereas LPIPS scores for the remaining two collec-
tions (Figs. 4b, 4c) remained between 0 and 0.15 for most of
these algorithms. We observed a similar effect for some of
our baseline algorithms (Fig. 5a), particularly for Blind
Deconvolution (BD), which sharpened images, but also
amplified artifacts that were already present.

The images human raters considered as having a high-
level of improvement tended to also have low LPIPS scores
(usually between 0 and 0.15), while images with higher
LPIPS scores tended to be rated negatively by human
observers (see Figs. 4 and 5a). Similar behavior was
observed by Zu et al. [134]. They suggest that high LPIPS
scores might indicate the presence of unnatural looking
images. Contrasting the results of the two best participant
and baseline algorithms (Fig. 5b), we observed that for the
baselines and CCRE the LPIPS and human rating distribu-
tions were more tightly grouped than MA-CNN. Neverthe-
less, their changes to images tended to be considered small
by both human raters and the LPIPS metric, with a user rat-
ing closer to 3.0 (no change) and LPIPS scores between 0
and 0.1. In contrast, changes induced by the MA-CNN
method reached extremes of 0.36 and 2.35 for LPIPS score
and human rating respectively, flagging the presence of
very noticeable, but in some cases detrimental, changes.
This is a further constraint of the LPIPS metric.

It is important to note that while we calculated the mean
user rating of all the workshop participant submissions and
baseline algorithms, it was not possible to obtain the LPIPS
scores for any of the super-resolution approaches. This
would have required us to down-sample enhanced images
to be of the same size as that of the original images, which
would have negated the improvement of such methods.

Focusing just on the image improvement / deterioration
as perceived by human raters, we can turn to Fig. 6a for the
performance of all algorithms, including the super-resolu-
tion approaches, submitted by each team. It is important to
note that while most of the algorithms tended to improve
the visual quality of the images they were presented with, a
large fraction of the images they enhanced tended to have
an average score between 3 and 3.25. In such cases, humans
could not detect any meaningful change.

The best performing algorithm submitted for this task,
CCRE, was able to improve the visual quality of 126 images,
even though the algorithm did not appear to perform any
significant changes to most of the images (144 images had a
rating between 3 and 3.25). The enhancement applied was

considered a subtle improvement in most scenarios: 114
images had a score between 2.75 and 3, with the remaining
12 having a higher improvement score between 2.5 and
2.75. However, only 10 percent of the modified images were
considered to degrade the image quality, and even then
they had a rating of between 3.25 and 3.5, which means that
the degradation was very small.

As mentioned previously, the visual changes generated
by the runner-up enhancement algorithm MA-CNN were
more explicit than those present in CCRE. While the num-
ber of images that were considered to be improved was
smaller (59 improved images), 13 of them were between the
range of 2.25 and 2.75, indicating a good measure of higher
visual quality. Nevertheless, the sharp changes introduced
by this algorithm also seemed to increase the perceived deg-
radation on a larger portion of the images, with almost 25
percent having a score between 3.5 and 3.75 (thus indicating
a significant deterioration of the image quality).

With respect to the baseline algorithms, we observed a
less dramatic perception of quality degradation. Given that
most of the algorithms tested were focused on enhancing
the image resolution (by performing image interpolation or
super-resolution), they were more prone to perform very
subtle changes in the structure of the image. This is reflected
in Fig. 6b. Fig. 6c shows a side by side comparison of the
two best baselines (VDSR and Nearest Neighbor interpola-
tion) and the two best performing participant submissions.

7.2 Evaluation of Object Recognition Performance
(UG2 Evaluation Task 2)

The results for this evaluation task fill a gap in our knowledge
on the effects certain restoration and enhancement algorithms
have on visual recognition. In the following section, we intro-
duce results for various algorithms ranging from image inter-
polation to deep learning-based approaches that are designed
solely for the purpose of improving the “perceived” visual
quality of an image. We then compare the performance of
such techniques to the enhancement approaches intentionally
designed to improve object classification.

For this evaluation task, the participants were expected to
provide enhancement techniques catering to machine vision
rather than humanperception. Supp. Table 2, available online,
and Fig. 7 depict the baseline classification results for the UG2

training and testing datasets, without any restoration or
enhancement algorithm applied, at rank 5.

Given the very poor quality of its videos, the UAV Collec-
tion proved to be the most challenging for all networks in
terms of object classification, leading to the lowest classifica-
tion performance out of the three collections. While the Glider
Collection shares similar problematic conditions with the
UAV Collection, the images in this collection lead to a higher
classification rate than those in the UAVCollection in terms of
identifying at least one correctly classified synset class (metric
M1). This improvementmight be causedby the limited degree
of movement of the gliders, since it ensures that the displace-
ment between frames was kept more stable over time, as well
as a higher recording quality (taking into consideration the
camera weight limitations present in small UAVs are no lon-
ger a limiting factor for this collection’s videos). The con-
trolled Ground Collection yielded the highest classification
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rates, which, in an absolute sense, are still low (the highest
classification rate being 65.23 percent for metric M1 and 52.06
percent for metric M2 for the testing dataset; see Supp.
Table 2), available online. The participants of the UG2 work-
shop were expected to develop algorithms to improve upon
the baseline scores.

Additionally, we were interested in assessing the perfor-
mance of the participants’ enhancement methods when
applied to light-weight classification models. As such, we
employed two additional networks designed for mobile
and embedded vision applications: MobileNet (v2) and
NASNetMobile. The performance follows similar patterns
to the ones obtained from larger classification models: (1)
the UAV Collection remains the most challenging for both
networks, while the Ground Collection obtained the best
results out of the three collections; (2) the sharp difference
in the performance on the two metrics remained. However,
both mobile networks obtained poor results (when com-
pared to the larger networks) when classifying the UG2

data. It is likely that these models are specialized towards

ImageNet-like images, and have more trouble generalizing
to new data without further fine-tuning.

While there are some correlations between the improve-
ment of visual quality as perceived by humans and high-
level tasks such as object classification performed by net-
works, research by Sharma et al. [91] suggests that image
enhancement focused on improving image characteristics
valuable for object recognition can lead to an increase in
classification performance. Thus we tried such a technique
as an initial experiment and compared it to the baseline
results. Fig. 8 shows the performance of the five enhance-
ment filters proposed by Sharma et al. on the UG2 dataset. It
is important to note that said filters were the un-altered fil-
ters Sharma et al. trained making use of good quality
images. This is because their focus was on improving the
classification performance of images with few existing per-
turbations. As such, the effect on improving highly cor-
rupted images is much different from that obtained on a
standard dataset of images crawled from the web. The
results in Fig. 8 establish that even existing deep learning
networks designed for this task cannot achieve good classi-
fication rates for UG2 due to the domain shift in training.

As can be observed in Supp. Table 3, available online,
and Fig. 9, the four novel algorithms submitted by partici-
pants for the second UG2 evaluation task excelled in the
processing of certain collections while falling short in
others. Most of the submitted algorithms were able to
improve the classification performance of the images in the
Ground Collection, but they struggled in improving the
classification for the aerial collections, whose scenes tend to
have a higher degree of variability than those present in the
Ground Collection. Only the CCRE algorithm was able to
improve the performance of one of the metrics for the UAV
Collection (the M2 metric for the ResNet network, with a
0.20 percent improvement over the baseline). The MA-CNN
algorithm was able to improve two of the Glider Collection
metrics (the M2 metric for the VGG16 and VGG19 networks
with 2.23 and 3.10 percent improvement respectively over
the baselines). For the most part, the algorithms tended to
improve the metrics for the Ground Collection, with the
highest classification improvement being provided by the

Fig. 7. Classification rates at rank 5 for the original, un-processed,
frames for each collection in the training and testing datasets.

Fig. 8. Comparison of classification rates at rank 5 for each collection after applying classification driven image enhancement algorithms by Sharma
et al. [91]. Markers in red indicate results on original images.
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CDRM method, with an improvement of 5.30 and 5.21 per-
cent over the baselines for the Inception M1 and M2 metrics.

Further along these lines, while both metrics saw some
improvement, the M2 metric benefited the most from these
enhancement algorithms. This behavior is more pronounced
when examined in the context of classic versus state-of-the-art
algorithms (Supp. Fig. 7), available online. While the baseline
enhancement algorithms had moderate improvements in
both metrics, the participant algorithms seemed to favor the
M2metric over the M1metric. For example, while the highest
improvement (on the Ground Collection) for the VGG19 net-
work in M1 was 0.03 percent, the improvement for the same
network in M2 was 2.95 percent. This leads us to conclude
that the effect these algorithms have on automatic object rec-
ognitionwould be that of increasingwithin-class classification
certainty. In other words, they would make an object belong-
ing to a super-class Li ¼ fs1; . . . ; sng become a better repre-
sentation of such class features, such that the networks are
able to detect more members of that class in their top 5
predictions.

8 DISCUSSION

The area of computational photography has a long-standing
history of generating algorithms to improve image quality.
However, the metrics those algorithms tend to optimize do
not correspond to human perception. And as we found out,
this makes them unreliable for the task of object recognition.
The UG2 dataset paves the way for this new research
through the introduction of a benchmark that is well
matched to the problem area. The first iteration of the chal-
lenge workshop making use of this dataset saw the partici-
pation of teams from around the globe and introduced six
unique algorithms to bridge the gap between computational
photography and recognition, which we have described in
this article. As noted by some participants and in accor-
dance with our initial results, the problem is still not
solved—improving image quality using existing techniques
does not necessarily solve the recognition problem.

The results of our experiments led to some surprises.
Even though the restoration and enhancement algorithms
tended to improve the classification results for the diverse

imagery included in our dataset, no approach was able to
uniformly improve the results for all of the candidate net-
works. Moreover, in some cases, performance degraded
after image processing, particularly for frames with higher
amounts of image aberrations. This highlights the often sin-
gle focus nature of image enhancement algorithms, which
tend to specialize in removing a specific kind of artifact
from an otherwise good quality image, which might not
always be the present. Some of the algorithmic advance-
ments (e.g., MA-CNN and CDRM) developed as a product
of this challenge seek to address the problem by incorporat-
ing techniques such as deblurring, denoising, deblocking,
and super-resolution into a single pre-processing pipeline.
This practice pointed out the fact that while the individual
implementation of some of these techniques might be detri-
mental to the visual quality or visual recognition task, when
applied in conjunction with other enhancement techniques
their effect turned out to be beneficial for both of these
objectives.

We also found out that image quality is a subjective
assessment and better left to humans who are physiologi-
cally tuned to notice higher variations and artifacts in
images as a result of evolution. Based on this observation,
we developed a psychophysics-based evaluation regime for
human assessment and a realistic set of quantitative meas-
ures for object recognition performance. The code for con-
ducting such studies will be made publicly available
following the publication of this article.

Inspired by the success of the UG2 challenge workshop
held at CVPR 2018, we intend to hold subsequent iterations
with associated competitions based on the UG2 dataset.
These workshops will be similar in spirit to the PASCAL
VOC and ImageNet workshops that have been held over
the years and will feature new tasks, extending the reach of
UG2 beyond the realm of image quality assessment and
object classification.
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